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In this lecture

In this lecture, we shall introduce propositional logic and we shall use
it to analyze the forms of mathematical reasoning.



Symbolic logic

• A map of Amsterdam is an an idealized model of Amsterdam. It depicts a
caricature 2-dim image of buildings, Amstel river, various canals, roads,
bicycle lanes, etc. We can consult a map to help us find the best route from
one place to another.

• In a similar way, symbolic logic is an idealized model of mathematical
language and proof.

• Curiously, mathematicians did not really study the proofs that they were
constructing until the 20th century. Once they did, they discovered that
logic itself was a deep topic with many implications for the rest of
mathematics.
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Symbolic logic begins with Aristotle

• A formal study of patterns of reasoning,
known today as ‘syllogism’, was first done
by Aristotle in his book ‘Prior Analytics’
(circa 350 BCE).

• The crucial observation of Aristotle: the
correctness of inferences of statements
has nothing to do with the content, truth
or falsity of the individual statements, but,
rather, the general patterns/rules of
reasoning.

• He showed us that we can classify valid
patterns of inference by their logical form.
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Examples of syllogism

Every man is an animal.
Every animal is mortal.
Therefore every man is mortal.

Every human is mortal.
No cyborg is mortal.
Therefore no cyborg is a human.

Every A is B.
Every B is C.
Therefore every A is C.

Every N is M.
No X is M.
Therefore no X is N.

BaA
CaB
CaA

MaN
MeX
NeX
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Historical context

First, to say about what and of what this is an investigation: it is about
demonstration and of demonstrative science. Then, to define what is a
premise, what is a term, and what a syllogism, and which kind of syllogism
is perfect and which imperfect. [...] A premise, then, is a sentence that
affirms or denies something of something, and this is either universal
or particular or indeterminate. By ’universal’ I mean belonging to all
or to none of something; by ’particular’ , belonging to some, or not to
some, or not to all ; by ’indeterminate’, belonging without universality
or particularity, as in ’of contraries there is a single science’ or ’pleasure
is not a good’.

(Aristotle, Prior Analytics Book I, translated by Gisela Striker)



• An argument is a sequence of claims.

• Some claims are called premises and some claims are called conclusions.

• A conclusion follows from some or no premises.

• Expressions like ‘so’, ‘consequently’, ‘hence’ and ‘therefore’ are used to
indicate that the claim that follows is the conclusion of the argument.

• Expressions like ‘because’, ‘since’, and ‘after all’ are used to indicate that
the claims that follow are the premises of the argument.
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New propositions from the old

• We can make the following new propositions from propositions P and Q.

Proposition Notation

P and Q P ∧ Q

P or Q P ∨ Q

P implies Q P ⇒ Q

P if and only if Q P ⇔ Q

not P ¬P

• Therefore, if P : Prop and Q : Prop then P ∧ Q : Prop, P ∨ Q : Prop,
P ⇒ Q : Prop, P ⇔ Q : Prop, ¬P : Prop, ¬Q : Prop, etc.
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Propositional logic: natural deduction style

• The propositional logic tells us precisely which inferences about propositions
are valid and why.

• An inference is valid if it can be justified by fundamental rules of reasoning
that reflect the meaning of the logical terms involved.

• In natural deduction, every proof is a proof from hypotheses. In other words,
in any proof, there is a finite collection of hypotheses P1; P2; : : : ; Pn and a
conclusion Q, and the proof shows that how Q follows from P1; P2; : : : ; Pn.
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The rules of inference for implication

The implication operator is the logical
operator ⇒, defined according to the
following rules:

• If Q can be derived from the
assumption that P is true, then
P ⇒ Q is true;

• If P ⇒ Q is true and P is true,
then Q is true.
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The rules of inference for conjunction

The conjunction operator is the logical
operator ∧, defined according to the
following rules:

• If P is true and Q is true, then
P ∧ Q is true;

• If P ∧ Q is true, then P is true;
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Example: chain of implications

Suppose P1; : : : ; Pn : Prop.

Suppose we know the propositions

(P1 ⇒ P2) ; (P2 ⇒ P3) ; : : : ; (Pn−1 ⇒ Pn)

to be true. Then P1 ⇒ Pn is true.
For instance if n = 3 we have

P1 ⇒ P2
1

P2

P2 ⇒ P3

P3
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A lazy (but wrong) way of writing

(P1 ⇒ P2) ∧ (P2 ⇒ P3) ∧ : : : ∧ (Pn−1 ⇒ Pn) : (1)

is
P1 ⇒ P2 ⇒ P3 ⇒ : : :⇒ Pn :

However since the expression (1) is tedious as it repeats the propositions
P2; : : : ; Pn−1, we allow for the short hand notation

P1

⇒ P2

⇒ : : :

⇒ Pn

to denote that the chain of implications (1) leads to the conclusion P1 ⇒ Pn.



Example.
We show that

(P ⇒ (Q⇒ R))⇒ (P ∧ Q⇒ R)

is a tautology.

2
[P ⇒ (Q⇒ R)]

1

[P ∧ Q]

P

Q⇒ R
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[P ∧ Q]

Q

R
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