MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021

- Propositional Logic

- Natural Deduction

Overview

2 Propositional logic

3 The rules of inference for the logical connectives

In this lecture, we shall introduce propositional logic and we shall use it to analyze the forms of mathematical reasoning.

Symbolic logic

• A map of Amsterdam is an an idealized model of Amsterdam. It depicts a caricature 2-dim image of buildings, Amstel river, various canals, roads, bicycle lanes, etc. We can consult a map to help us find the best route from one place to another.

Symbolic logic

- A map of Amsterdam is an an idealized model of Amsterdam. It depicts a caricature 2-dim image of buildings, Amstel river, various canals, roads, bicycle lanes, etc. We can consult a map to help us find the best route from one place to another.
- In a similar way, symbolic logic is an idealized model of mathematical language and proof.

Symbolic logic

- A map of Amsterdam is an an idealized model of Amsterdam. It depicts a caricature 2-dim image of buildings, Amstel river, various canals, roads, bicycle lanes, etc. We can consult a map to help us find the best route from one place to another.
- In a similar way, symbolic logic is an idealized model of mathematical language and proof.
- Curiously, mathematicians did not really study the proofs that they were constructing until the 20th century. Once they did, they discovered that logic itself was a deep topic with many implications for the rest of mathematics.

 A formal study of patterns of reasoning, known today as 'syllogism', was first done by Aristotle in his book '*Prior Analytics*' (circa 350 BCE).

 A formal study of patterns of reasoning, known today as 'syllogism', was first done by Aristotle in his book '*Prior Analytics*' (circa 350 BCE).

Aristotle

Prior Analytics

Translated by Robin Smith

- A formal study of patterns of reasoning, known today as 'syllogism', was first done by Aristotle in his book '*Prior Analytics*' (circa 350 BCE).
- The crucial observation of Aristotle: the correctness of inferences of statements has nothing to do with the content, truth or falsity of the individual statements, but, rather, the general patterns/rules of reasoning.

Aristotle

Prior Analytics

Translated I Robin Smit

- A formal study of patterns of reasoning, known today as 'syllogism', was first done by Aristotle in his book '*Prior Analytics*' (circa 350 BCE).
- The crucial observation of Aristotle: the correctness of inferences of statements has nothing to do with the content, truth or falsity of the individual statements, but, rather, the general patterns/rules of reasoning.
- He showed us that we can classify valid patterns of inference by their logical form.

Every man is an animal. Every animal is mortal. Therefore every man is mortal. Every A is B.BaAEvery B is C.CaBTherefore every A is C.CaA

Every man is an animal. Every animal is mortal. Therefore every man is mortal.

Every human is mortal. No cyborg is mortal. Therefore no cyborg is a human.

Every A is B. Every B is C. Therefore every A is C.	BaA CaB CaA
Every N is M.	MaN
No X is M.	MeX
Therefore no X is N.	NeX

Historical context

First, to say about what and of what this is an investigation: it is about demonstration and of demonstrative science. Then, to define what is a premise, what is a term, and what a syllogism, and which kind of syllogism is perfect and which imperfect. [...] A premise, then, is a sentence that affirms or denies something of something, and this is either universal or particular or indeterminate. By 'universal' I mean belonging to all or to none of something; by 'particular', belonging to some, or not to some, or not to all ; by 'indeterminate', belonging without universality or particularity, as in 'of contraries there is a single science' or 'pleasure is not a good'.

(Aristotle, Prior Analytics Book I, translated by Gisela Striker)

• An argument is a sequence of claims.

- An argument is a sequence of claims.
- Some claims are called premises and some claims are called conclusions.

- An argument is a sequence of claims.
- Some claims are called premises and some claims are called conclusions.
- A conclusion follows from some or no premises.

- An argument is a sequence of claims.
- Some claims are called premises and some claims are called conclusions.
- A conclusion follows from some or no premises.
- Expressions like 'so', 'consequently', 'hence' and 'therefore' are used to indicate that the claim that follows is the conclusion of the argument.

- An argument is a sequence of claims.
- Some claims are called premises and some claims are called conclusions.
- A conclusion follows from some or no premises.
- Expressions like 'so', 'consequently', 'hence' and 'therefore' are used to indicate that the claim that follows is the conclusion of the argument.
- Expressions like 'because', 'since', and 'after all' are used to indicate that the claims that follow are the premises of the argument.

Overview

2 Propositional logic

3 The rules of inference for the logical connectives

New propositions from the old

• We can make the following new propositions from propositions *P* and *Q*.

Proposition	Notation
P and Q	$P \wedge Q$
P or Q	$P \lor Q$
P implies Q	$P \Rightarrow Q$
<i>P</i> if and only if <i>Q</i>	$P \Leftrightarrow Q$
not P	$\neg P$

New propositions from the old

• We can make the following new propositions from propositions *P* and *Q*.

Proposition	Notation
P and Q	$P \wedge Q$
P or Q	$P \lor Q$
P implies Q	$P \Rightarrow Q$
P if and only if Q	$P \Leftrightarrow Q$
not P	$\neg P$

Therefore, if P : Prop and Q : Prop then P ∧ Q : Prop, P ∨ Q : Prop,
 P ⇒ Q : Prop, P ⇔ Q : Prop, ¬P : Prop, ¬Q : Prop, etc.

Propositional logic: natural deduction style

• The propositional logic tells us precisely which inferences about propositions are valid and why.

Propositional logic: natural deduction style

- The propositional logic tells us precisely which inferences about propositions are valid and why.
- An inference is valid if it can be justified by fundamental rules of reasoning that reflect the meaning of the logical terms involved.

Propositional logic: natural deduction style

- The propositional logic tells us precisely which inferences about propositions are valid and why.
- An inference is valid if it can be justified by fundamental rules of reasoning that reflect the meaning of the logical terms involved.
- In natural deduction, every proof is a proof from hypotheses. In other words, in any proof, there is a finite collection of hypotheses P₁, P₂, ..., P_n and a conclusion Q, and the proof shows that how Q follows from P₁, P₂, ..., P_n.

Overview

2 Propositional logic

3 The rules of inference for the logical connectives

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

 If Q can be derived from the assumption that P is true, then P ⇒ Q is true;

- The implication operator is the logical operator \Rightarrow , defined according to the following rules:
 - If Q can be derived from the assumption that P is true, then P ⇒ Q is true;
 - If $P \Rightarrow Q$ is true and P is true, then Q is true.

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

- If Q can be derived from the assumption that P is true, then P ⇒ Q is true;
- If $P \Rightarrow Q$ is true and P is true, then Q is true.
- $P \Rightarrow Q$ represents the expression "if P, then Q".

The conjunction operator is the logical operator \land , defined according to the following rules:

The rules of inference for conjunction

The conjunction operator is the logical operator \land , defined according to the following rules:

• If P is true and Q is true, then $P \land Q$ is true;

The introduction rule

$$\frac{P \quad Q}{P \land Q} \land^{\mathrm{I}}$$

The rules of inference for conjunction

The conjunction operator is the logical operator \land , defined according to the following rules:

- If P is true and Q is true, then $P \land Q$ is true;
- If $P \wedge Q$ is true, then P is true;

The introduction rule

$$\frac{P \quad Q}{P \land Q} \land \mathbf{I}$$

The rules of inference for conjunction

The conjunction operator is the logical operator \land , defined according to the following rules:

- If P is true and Q is true, then P ∧ Q is true;
- If $P \wedge Q$ is true, then P is true;
- If $P \wedge Q$ is true, then Q is true.

 $P \wedge Q$ represents "P and Q".

The introduction rule

$$\frac{P \quad Q}{P \land Q} \land \mathbf{I}$$

Suppose $P_1, \ldots, P_n : \mathbb{P}$ rop.

Suppose P_1, \ldots, P_n : Prop. Suppose we know the propositions

$$(P_1 \Rightarrow P_2)$$
, $(P_2 \Rightarrow P_3)$, ..., $(P_{n-1} \Rightarrow P_n)$

to be true.

Suppose P_1, \ldots, P_n : Prop. Suppose we know the propositions

$$(P_1 \Rightarrow P_2)$$
, $(P_2 \Rightarrow P_3)$, ..., $(P_{n-1} \Rightarrow P_n)$

to be true. Then $P_1 \Rightarrow P_n$ is true.

Suppose P_1, \ldots, P_n : Prop. Suppose we know the propositions

$$(P_1 \Rightarrow P_2)$$
, $(P_2 \Rightarrow P_3)$, ..., $(P_{n-1} \Rightarrow P_n)$

to be true. Then $P_1 \Rightarrow P_n$ is true. For instance if n = 3 we have

Suppose P_1, \ldots, P_n : Prop. Suppose we know the propositions

$$(P_1 \Rightarrow P_2)$$
, $(P_2 \Rightarrow P_3)$, ..., $(P_{n-1} \Rightarrow P_n)$

to be true. Then $P_1 \Rightarrow P_n$ is true. For instance if n = 3 we have

Suppose P_1, \ldots, P_n : Prop. Suppose we know the propositions

$$(P_1 \Rightarrow P_2)$$
, $(P_2 \Rightarrow P_3)$, ..., $(P_{n-1} \Rightarrow P_n)$

to be true. Then $P_1 \Rightarrow P_n$ is true. For instance if n = 3 we have

A lazy (but wrong) way of writing

$$(P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_3) \land \ldots \land (P_{n-1} \Rightarrow P_n).$$
(1)

is

$$P_1 \Rightarrow P_2 \Rightarrow P_3 \Rightarrow \ldots \Rightarrow P_n$$
.

However since the expression (1) is tedious as it repeats the propositions P_2, \ldots, P_{n-1} , we allow for the short hand notation

$$P_1 \Rightarrow P_2 \Rightarrow \dots \Rightarrow P_n$$

to denote that the chain of implications (1) leads to the conclusion $P_1 \Rightarrow P_n$.

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{\overline{[P \Rightarrow (Q \Rightarrow R)]}^{2} \quad \frac{\overline{[P \land Q]}}{P}^{1}}{\underline{[P \land Q]}^{1}} \quad \frac{\overline{[P \land Q]}}{Q}^{1}$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{\overline{[P \Rightarrow (Q \Rightarrow R)]}^{2} \quad \overline{[P \land Q]}^{1}}{Q \Rightarrow R} \quad \frac{\overline{[P \land Q]}^{1}}{Q} \quad \frac{\overline{[P \land Q]}^{1}}{Q}$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

We show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

